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Abstract 

This report is an assessment of matrix filters as a tool for localization and detection 
problems in passive sonar. The outputs of an array of sensors, at some given frequency, 
can be represented by a vector of complex numbers. A linear filtering operation on the 
sensor outputs can be expressed as the multiplication of a matrix (called a matrix filter) 
times this vector. The purpose of a matrix filter is to attenuate unwanted components 
in the measured sensor data while passing desired components with minimal distortion. 
Matrix filters are designed by defining an appropriate pass band and stop band and 
solving a convex optimization problem. This report formulates the design of matrix 
filters for passive sonar and gives two examples. 

1 Introduction 

We propose the use of matrix filters for passive sonar signal processing. The outputs of an 
array of N sensors, at some given frequency, can be represented by a vector, x, of complex 
numbers. A linear filtering operation on the sensor outputs can be expressed as a matrix 
multiplication, y = Mx, where M is an N x N matrix of complex numbers. The purpose of 
a matrix filter is to attenuate unwanted components in the measured sensor data, x, while 
passing desired components with minimal distortion. Matrix filters are designed by defining 
an appropriate pass band and stop band and solving a convex optimization problem. The 
design of matrix filters by convex optimization was proposed in [1], which includes examples 
of frequency selective filters and Hilbert transform filters for short time series. In this report 
we show how to design filters that are useful for detection and localization problems in 
passive sonar. 

2 Data Model 

Consider a vertical array of N sensors located at depths ZI,---,ZAT, and a cw acoustic 
source at frequency UJQ located at a depth z and a range r from the array. Under certain 
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assumptions [2], the Fourier transform of the sensor outputs, evaluated at uo, can be written 
as 

a(r, z) = sUa{r, z) + n, (1) 

where 

« = 

-<MZJV) <I>Q(ZN). 

a(r,z) = 

>/2^l(*)cfJfci-w)r 

V2ir<j>Q(z) c(jkn-yn)r 

JrkQ 

(2) 

s is a complex scale factor, and n is a vector of noise samples. The functions <fo(z), 
i = 1, ••-,(? are the normal modes associated with the acoustic environment; they can 
be calculated numerically using a program such as KRAKEN [3]. The numbers k\, • • •, fcg 
and 7i,• • • ,7Q are the horizontal wavenumbers and mode attenuation coefficients, respec- 
tively, and are also calculated by KRAKEN. The vector a(r,z) in (1) is referred to as a 
replica vector. In what follows, all replica vectors are normalized to unit length and the 
dependence on range and depth is not shown explicitly. 

3    Matrix Filter Design 

Matrix filters are designed using a set of replica vectors defined over a region of range and 
depth. The pass band set, P, consists of replica vectors in a given range/depth region that 
should "pass" through the filter with only a small, specified, amount of distortion. The stop 
band set, 5, consists of replica vectors that should be attenuated as much as possible by 
the filter. The replica vectors in P and S are calculated at grid points in range and depth 
and are normalized to have unit length. Replica vectors that are not in either P or 5 may 
be thought of as defining a "don't care" region in range and depth. Don't care regions are 
used to separate the pass and stop bands so that the filter is not asked to simultaneously 
pass and attenuate very similar replica vectors. A typical definition of pass and stop bands 
is shown in Fig. 1. The design specifications for a matrix filter, M, are given in terms of 
convex functions of the filter response. For example, the stop band performance is specified 
by the function 

V>(M)=max||Mar, (3) 

which measures the maximum energy in the filter stop band response. 
We have used two different pass band formulations. The first requires that replica vectors 

in the pass band pass through the filter with distortion less than a specified tolerance. This 
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Figure 1: Pass band and stop band regions for a matrix filter. 

&€P (4) 
requirement is written as 

||Ma-a||2</?, 

where ß is a user-specified constant. 
A second pass band formulation is motivated by a matched-field source localization 

technique known as the Bartlett processor [4]. Given a data vector d observed on the sensor 
array and replica vectors a from a range/depth search region, R, the Bartlett processor 
computes 

|a"d|2 

&eR. (5) 
lldll2 ' 

The range and depth associated with the replica vector that produces the maximum value 
in the above equation is taken as the estimate of the source range and depth. 

A pass band formulation motivated by the Bartlett processor is: 

|1 - aHMa|2 < ei and ||M||2 < 1 + e2, a 6 P. (6) 

The first inequality above can be used to derive the following bound on the Bartlett surface 
for the matrix filter output in the pass band: 

(l-ViD2<|aifMa|2<(l + Vir)2. 

Thus, by choosing e\ appropriately, the Bartlett surface for the filter output in the pass 
band can be made arbitrarily close to unity. The second inequality in equation (6) keeps 
the maximum energy gain of the filter close to unity across the pass band. 

Matrix filters are calculated by solving an optimization problem; namely, minimize the 
stop band energy subject to a pass band constraint. The filter design optimization problem 
using the first pass band formulation is: 

minV»(M), subject to equation (4) . 
M (7) 
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Figure 2: Power response (||Ma||2) for a matrix filter designed using (7). 

The optimization problem using the second pass band formulation is: 

min^(M), subject to equation (6) . (8) 
M 

It can be shown that the objective and constraint functions in (7) and (8) are convex 
functions of the elements of M. Attractive features of convex optimization problems such 
as (7) and (8) are that they can be numerically solved to a guaranteed accuracy, and 
there are no local minima. We used the ellipsoid algorithm described in [5] to perform the 
optimization. 

As an example, we designed a matrix filter by solving (7) with ß = 0.006. The pass 
and stop bands were chosen as shown in Fig. 1, with replica vectors calculated every 10 m 
in range and every meter in depth. The power response of this filter is shown in Fig. 2 as 
a function of range and depth. The filter power reponse is less than 0.51 in the stop band 
and greater than 0.9 in the pass band. 

4    Simulation Examples 

In this section we give some simulation results on the use of matrix filters in localization 
and detection problems. We used a realistic simulated environment modeled after a region 
in the Gulf of Mexico [6]. This is a 3-layer shallow-water environment comprised of water 
over sediment over rock. A measured sound-velocity profile from the Gulf of Mexico was 
used in the simulations. The environmental parameters describing this environment are 
shown in Table 1. The receiving array for these examples is a 20-element vertical array of 
sensors placed every 5 meters in depth from 10 to 105 m. 

In the first example, consider two equal power 250 Hz sources. Source 1 is at a range of 
4150 m from the receiving array and a depth of 5 m, and source 2 is at a range of 4250 m 



Parameter Value 
water depth 114 m 
sediment sound speed 1600 m/s 
rock sound speed 1625 m/s 
sediment attenuation 0.5 dB/A 
sediment density 1.85 
rock density 2.2 

Table 1: Environmental parameters for Gulf of Mexico environment 

and a depth of 98 m. If the received signal consists of source 1 alone, the Bartlett processor 
produces the output shown in Fig. 3. If the received signal consists of source 2 alone, the 
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Figure 3: Bartlett surface for source 1. 

Bartlett processor produces the output shown in Fig. 4. Note that the peaks of these plots 
occur at the ranges and depths corresponding to sources 1 and 2, respectively. When the 
received signal consists of both source 1 and source 2, the Bartlett processor produces the 
output shown in Fig. 5. This plot has peaks in the locations corresponding to the two 
sources but it also has about twenty false peaks! 

We now apply a matrix filter to the two-source data before computing the Bartlett pro- 
cessor. The matrix filter was designed by solving the optimization problem in equation (8) 
with e\ = 2.5 x 10~3 and 62 = 1-05. The pass band for this filter was defined from 4000 
to 4250 m in range and 1 to 10 m in depth. Note that source 1 is in the pass band of this 
filter. The output of the Bartlett processor operating on the matrix filtered two-source data 
is shown in Fig. 6. The effect of source 2 has been removed and the Bartlett surface has a 
peak at the location of source 1. 
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Figure 4: Bartlett surface for source 2. 
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Figure 5: Bartlett surface for sources 1 and 2. 
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Figure 6: Bartlett surface for sources 1 and 2 with matrix filtering. 

In the second example we use the matrix filter designed using (7), whose power response 
is shown in Fig. 2. This filter is used as a "trip wire" to detect when a shallow source moves 
through the filter pass band (4000-4250 m). The source is at 5 m depth and moving at 5 
m/s. Fig. 7 shows the range of the source as a function of time as well as the matrix filter 
power output, ||Md||2/||d||2, as a function of time. The filter output is computed every 25 
seconds, as indicated by circles in the plot. The output stays below 0.51 while the source is 
in the stop band, and exceeds 0.9 when the source is in the pass band. The three samples 
at which the matrix filter output exceeds 0.9 correspond to source ranges of 4000, 4125, 
and 4250 m. 

5    Conclusion 

This report introduced matrix filters as a tool for localization and detection problems in 
passive sonar and gave two examples. The first example showed that matrix filters can 
simplify the localization problem by effectively removing a source from the received data. 
In this example the shallow source was in the pass band of the matrix filter. In practice, one 
could use a bank of matrix filters whose pass bands cover a region of range. Filters whose 
outputs exceeded a threshold would indicate the location of shallow sources. These sources 
could be subtracted from the observed data before attempting to localize the submerged 
source(s). 

The second example showed that a shallow, moving source could be detected when it 
reached the filter pass band of a fixed matrix filter. Future work will include further devel- 
opment of these applications as well as the extension of matrix filter design to broadband 
signals. 
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Figure 7: Range to source and matrix filter power output versus time. 
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